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SUMMARY

The position of the free surface is calculated numerically for a porous slab which is partly filled with a
liquid and differentially heated from its sides. A coordinate transformation is used to transform the original
problem from a physical coordinate system to a non-orthogonal system where the free surface becomes
a fixed straightline. The transformed problem is then solved using a finite difference method. Results are
obtained for Rayleigh numbers up to 1000. The Nusselt numbers increase slightly with medium Rayleigh
numbers (convection-dominated region) as expected. Since at low Ra the conduction is dominant and at
high Ra radiation is dominant. Hadizadeh and Tien (Int. J. Heat Mass Transfer 2004; 17(6):799–804)
studied the forced convection on the surface of porous layer. In that paper they dealt with in detail the
boundary regime of liquid in the channel and modelled the flow and heat transfer. Copyright q 2007
John Wiley & Sons, Ltd.
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INTRODUCTION

The study of porous media in which liquid saturation and thermal diffusion take place are cur-
rently of high interest in many fields. The diffusion of oil and gas in oil wells, leaching of ores
and steam generation using porous enclosures requiring fast heat disposal are some of the ap-
plications in which the liquid filling a porous slab is used. The steady fully saturated flow in a
porous medium with heat conduction is considered for the case where the upper boundary consists
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of a free surface. The model consists of Poisson equation for the stream function, the steady
diffusion convection equation for the temperature and a first-order equation for the free surface
together with appropriate boundary conditions. In the study by Rasmussen [1] this problem was
dealt with by a analytical solution using a small Rayleigh number perturbration for the case of
porous slab partly filled and differentially heated from the sides. A first-order expression for the
free surface and a third-order approximation to the heat transfer across the slab were obtained
from an asymptotic solution. There are two main difficulties numerically. First, the mathematical
model is nonlinear since both the diffusion equation and the free surface equation are coupled
by two nonlinear terms. Hence, they have to be converted to discrete form like difference equa-
tions and solved by iteration. The second difficulty is the irregular-shaped domain with the free
surface which makes it difficult to apply finite difference methods directly. In this we use co-
ordinate transformation which transforms the original domain into a rectangular domain where
the finite differences can be obtained. The resulting model was solved for different values of
the Rayleigh number Ra, and we present numerical results for the free surface and the heat
transfer.

The porous slabs are used in combined lubrication and thermal insulation to rotating ma-
chines like turbines, fans, compressor and motor shafts and in systems where heat dissipa-
tion is of high importance. They are used for providing indirect heat in vacuum distillers,
chemical reactors with indirect and controlled heating bioreactors, vacuum and steam-heated
tube dryers where steam, oil or a thermic fluid is used to provide heat. The heat is supplied
using hot vapour, steam or a thermic fluid in by slowly perfusing through a porous enclo-
sure. They are also used as coolant circuits in nuclear reactors and in thermofusion reactors as
diverters.

Many papers which deal with either diffusion convection or free surface exist [2–6], but a
combined solution was not dealt with earlier. Loh and Rasmussen [7] studied the free surface
convection while Hadizadeh and Tien [2] studied the forced convection on the surface of the
porous layer. In that paper they dealt with in detail the boundary regime of liquid in the chan-
nel and modelled the flow and heat transfer. In this paper, we compare our data with that of
Hadizadeh and Tien [2] for the Nusselt and Rayleigh numbers. Lai [3] discussed the adiabatic
convection for a line heat source. Pop and Postelneicu [4] discussed the effect of heat gener-
ation on the layers in porous media. Ras and Pop [5] reported the free convection in a con-
crete slab due to water seepage and corresponding heat effects. Ras [6] delved on the models
for natural convection in porous media with stagnation point flow. Yin [8] studied the forced
convection in porous media. Pop [9] studied the surface fluid layer and the energy analysis
of the surface layer. Rasmussen [10] studied the effect of non-Darcy convection in the free
surface of a porous media. But the previous workers did not deal with the combined hydro-
dynamics and heat transfer for accounting the shape of the liquid in the porous slab (porous
regime).

In this paper, a generalized treatment for convection force and the effect of free surface hydro-
dynamics on the heat transfer are dealt with. A novel model incorporating computation of local
and average heat flux has been discussed. The effect of the depth of the surface and geometry
of the porous media are modelled. A coordinate transformation technique has been used to take
relative magnitudes of the velocity and temperature gradients. A finite difference technique which
is simple and convenient has been used to solve the model. Rayleigh number, Nusselt number and
Darcy number have been computed. All the results are compared with Hadizadeh and Tien [2],
Rasmussen [1, 9] and other literature in the field.
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EXPERIMENTAL METHODS

A porous aluminium insert is placed in a small square recess made on a curved (5 cm× 5 cm) metal
plate. The metal plate is kept horizontally in a rectangular tank with. Copper-constantan/K-type
thermocouples. A cooling device with temperature measurement and control is connected to the
tank and castor oil is heated to 5◦C. The curved plate is wound with a nichrome heating wire and
connected to a voltage source. Since the metal plate is curved there is a varying heat flux along
the surface of the curved plate. The coolant (castor oil is heated as it flows along the plate) is
allowed to flow into the rectangular tank. It penetrates the porous insert and comes out.

The distribution of the coolant is controlled so that the surface has uniform heat flux. This is
done by varying the depth of immersion of metal plate in the coolant by keeping it sloping at a
angle of 10–12◦ as shown in Figure 1(a).

Mathematical model

The two-dimensional (2D) porous region is shown in Figure 1(a). The curved upper and lower
boundaries are permeable, while the side boundaries are joined to a solid wall and hence have no
flow through them. The upper reservoir contains coolant at P∞, L∞, which is pumped into the
region. The coolant is pumped into the upper reservoir region through the boundary s. The coolant
flows out through s0 which is at uniform pressure p0 and has a heat flux q0(x, y) imposed along it.
The coolant flow distribution through s0 is to be regulated, to carry away the heat load and maintain
the surface s0 at a specified temperature t0. This is accomplished by having a proper shape of the
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Figure 1. (a) Experimental set-up for the heat flux studies in a porous insert; and (b) flow configuration.
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upper curved surface. The correct region shape will provide the required flow distribution and heat
conduction within the porous structure such that s0 will be at the desired uniform temperature.
In many instances, the flow resistance of the porous medium is large enough such that p∞–p0 is
much greater than any pressure variations along the porous boundaries. Hence, they are assumed
to be uniform.

Formulation

The flow configuration of the porous slab is given in Figure 1(b). We consider a long porous
slab of width D which is partly filled with a liquid. At the reference temperature T0 the liquid
occupies the region 0�x�D, −L�z<0; the line z = 0 is the free surface of the liquid. In general,
we represent this by z = h(x) where h(x) is the unknown function of x .

The flow field is given by the continuity equation

∇ · (�v)= 0

and Darcy’s law

�v= − K (∇P + �gk) (1a)

where k is the unit vector in the positive z direction. The temperature field is given by heat
conduction equation

c� v · ∇T = �∇2T (1b)

where c is the specific heat, T temperature and � the coefficient of thermal conductivity. We
also require an equation of state which gives the dependence of density on temperature. For most
liquids, it is adequate to suppose that this relationship is linear; thus, we use

�= �0[1 − �(T − T0)]
� is the volumetric thermal expansion coefficient and �0 and T0 are the reference values.

At the free surface and at the bottom of the slab the heat flow is set to zero, while the two sides
are kept at different temperatures

�T
�z

= 0, vz = 0 at z = − L

T = T0 − 1
2�T, vx = 0 at x = 0

T = T0 + 1
2�T, vx = 0 at x = D

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1c)

�T
�z

− h′ �T
�x

= 0

vz − h′vx = 0

P = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at z = h(x) (1d)

The first boundary condition on the free surface z = h(x) states that the normal temperature
gradient is zero corresponding to zero heatflux; the second condition is the kinematic boundary
condition which expresses the fact that fluid particles which are the free surface initially remain
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there. We assume that the pressure at z = h(x) is constant and since only �P appears we can
take this constant to be zero, this gives the third condition. It should be noted that for the concept
of a sharp interface between a fully saturated and completely unsaturated zone, the mathematical
model presented above may not be valid. But in most of the practical situations the depth of this
intermediate zone will be small compared to the other characteristic lengths of the problems such
as the width of the slab. The results of the present model give a reliable solution for the complete
problem.

We define the non-dimensional variables by

X∗ = x

D
, z∗ = z

D
, ∇∗ = D∇

h∗(x∗) = h(x)

D

u= �

K�g��T
�v

� = T − T0
�T

And a non-dimensional potential by

� =
(

P

�0g
+ z

)
1

D��T
(2)

In the following non-dimensional formulation, we denote x∗, z∗ and h∗ by x, z, h for convenience.
If we define a stream function � such that

ux =�z and uz = − �x

the governing equations can be written in the form

∇2�= − �x (2a)

∇2� =Ra(�z�x − �x�z) (2b)

where the Rayleigh number is given by

Ra= cK�gD�

�v

and �= ��T .
The corresponding boundary conditions of (1d) become

at x = 0, � = − 1
2 , � = 0

x = 0, � = − 1
2 , � = 0

z = −L/D = − �, �z = 0, �= 0

⎫⎪⎪⎬
⎪⎪⎭ (2c)
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Numerical procedure

Since we wish to apply finite difference method, it is convenient to use a coordinate transformation
method to transform irregularly shaped domain 0<x<1, −r<z<h(x) into a regularly shaped
domain where all boundaries will coincide with the grid lines. Hence, we let x0 = z = 0.

The non-uniform mesh was used since it is known that most of the variation in 	 and � takes
place near the boundaries. Hence, a non-uniform mesh with lines concentrated in these regions
will give the best accuracy. Standard difference approximations are used and the changes in mesh
openings are smooth enough so that second-order accuracy is obtained throughout the region. The
numerical procedure for solving the boundary value problems (6)–(14) consists of two parts: in
the first part, the field Equations (6) and (7) together with the boundary conditions (8)–(10) are
solved for � and 	 given the free surface function h(x); while in the second part Equations (13)
and (14) are solved for h(x) given 	 and �. Since these two parts are coupled, it is necessary
to use an iterative procedure. Thus, if hni is the nth approximation to h(x) given 	 and �; these
values are then used in Equations (13) and (14) which is solved for hn+1

i . This iterative procedure
is continued until max |hn+1

i − hni |<10−5.
With given hni �

n+1, 	n+1
i, j is as follows. We use the second-order difference formulae to replace

Equations (6) and (7) by corresponding difference equations; upwind downwind formulae were
not used. Since these algebraic equations are nonlinear, an iterative procedure must be used. The
RHS of Equation (6) is evaluated using hn+1

i and �n+1
i , and the resulting net of algebraic equations

for an approximation to 	i j are swept once again using a line SOR (sum of residues). The values
are then used in equations to evaluate �i and 	i in Equation (7) until the difference between the
two consecutive iterates is less than the given tolerance. These are then solved for hn+1

i

At z = h(x)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�z + h(�x + �) = h′

�

�z − h′�z = 0

	 = 0

(3)

since the mass is conserved we can write another relation (in non-dimensional form) as below∫ 1

0
h dx =

∫ 1

0

∫ h

−�
��T � dz dx (4)

Now, we analyse how the free surface affects the heat flux in the porous slab. At x = 0 the heat
flux in the slab is given by

q = �(0, z) dz (5)

Here, the integral is computed along the sidewall x = 0 which forms an isotherm.
Now we convert the coordinate to transform the irregular domain 0�x�1, −��z�h(x) to the

regularly shaped domain where all boundaries will coincide with grid lines.
This is needed for a numerical solution of the above model using a finite difference method.

Hence, in (3)–(5) we let

x = 0, y = z − h(x)

h(x) + �
�
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Hence, we get the transformed variables as

At z = − � → y = − �

and

at z = h(x) → y = 0

In terms of the new coordinates, Equations (1)–(2) become

D2	= − �x + h
z + �

h + �
�y (6)

D2� − Ra
�

h + �
[	y�x − �y	x ] = 0 (7)

where

D2 = �2

�x2
− 2h′

(h + �)

�2

�x�y
h′2(z + �)2 + �2

(h + �)2
�2

�y2
+ (y + �)

(h + �)2
[2h′2 − (h + �)] �

�y

and

� = − 1
2 , 	= 0 at x = 0 (8)

� = 1
2 , 	= 0 at x = 1 (9)

�z = 0, 	= 0 at y = − � (10)

	 = 	y at y = 0 (11)

�z − h′(h + �)

�(1 + h2)
�x = 0 at y = 0 (12)

h′ = − �	y

[(1/�) − �](h + �) − �h′	y
at y = 0 (13)

Here we have replaced x0 by x for generalizing. The mass conservation Equation (4) and the heat
transport Equation (5) become

q = ��T

�

∫ 0

−�
(h + �)�x (0, y) dy (14)

The region 0�x<1, −��y�0 is covered with a non-uniform finite difference mesh defined by

0= x1<x2<· · ·<xN+1 = 1

and − � = y1<y2· · ·<yM+1 = 0

}
(15)

Now we use the notation 	i, j =	(xi , y j ).
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Table I. Local heat flux h(x) for different values of Ra with �= 0, � = 1.0.

Ra z = 0 (results of [2]) z = 0 z = 1 z = 0.2 z = 0.4 z = 0.6 z = 0.8 z = 1 (results from [2])
Local heat flux h(x)

0.1 −0.125 −0.12 0.123 −0.09 −0.03 0.033 0.093 0.125
100 −0.04 −0.033 0.0533 −0.011 0.0091 0.029 0.041 0.0509
300 −0.03 −0.028 0.041 −0.05 0.011 0.025 0.0364 0.044
500 −0.023 −0.021 0.03 −0.002 0.011 0.022 0.033 0.038
800 −0.0171 −0.05 0.029 0.00 0.011 0.02 0.028 0.034

1000 −0.016 −0.006 0.0328 0.001 0.011 0.0189 0.026 0.032

Table II. Values of Nusselt numbers with � = 0.35, � = 1.

Ra Nu (experimental) Nu (numerical solution) Nu (from [2])
100 2.3 >2.2 1.9
250 5.44 <5.32 5.4
350 8.33 >8.31 8.6
500 11.3 >11.34 11.3
800 13.4 >13.34 13.6

1000 15.67 >15.7 15.8

A second-order difference approximation to Equation (13) is

hi + 1= −[(�/2�)(	n+1
imM−1 − 4	n+1

I,M )]/{[(1/�) − (�n+1
I,M )]

×x(hn+1
i + �) − (�/2�)hni (	

n+1
I,M )} (16)

where h1 = h′
1 and we have assumed the two grid spacings next to z = 0 are equal so that

�= zM+1 − zM = zM − zM−1

Hence, we have

hn+1
i =

∫
hn+1
i dx + �

∫ 1

0

∫ 0

−�
(hn+1 + �)�n+1 dz) dx −

∫ 1

0

∫ x

0
(hn+1 d
) dx (17)

Equations (16) and (17) are coupled nonlinear forms of hn+1
i when 	n+1

I and �n+1
I are given. They

were solved by direct iteration with integrals in Equations (14) and evaluated using trapezoidal
rule. The convergence was accelerated by using over relaxation of the variable. The final heat flux
q can be calculated by a numerical computation of (14).

Numerical solution for the case where the top surface is not free but fixed with a lid at z = 0 is
also shown in Tables I and II.

For the boundary conditions of a fixed lid we have

�z = 0, 	= 0 at z = 0

Here the outer iteration is not required as done for the free surface as it is a closed lid.
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RESULTS AND DISCUSSION

The plots of Ra vs the local heat flux h(x) are shown in Figure 3 for z = 0.4 and 0.4. Figure 2
shows the plot of Rayleigh number with local heat flux at z = 0.2. The heat flux plot of
Figure 7 shows these values at z = 0.8. As we see the values of h(x) increase continuously
along the distance z for same Rayleigh numbers, and for the same value of z they increase slightly.
Only for z = 0 the h(x) values are negative, they have an increasing tendency to positive value
at z = 0.2 and subsequently become higher along the distance. This may be attributed to the fact
that conduction and radiation-dominated flow at the far end of the channel is high (i.e. at higher
Rayleigh numbers) since the inlet velocity is less. Heat dissipation occurs away from the hot end
and continuously decreases as the distance (axial) increases. Figure 4 shows the Rayleigh number
vs heat flux for z = 0.6.

Figure 5 shows the plot of Nusselt numbers (experimental) and Figure 6 Nusselt numbers
(computed by model) for various Rayleigh numbers. Both are in close agreement except at low
Ra (convection-dominated flow). The Nusselt numbers increase slightly with medium Rayleigh
numbers (convection-dominated region) as expected. Since at low Ra, the conduction is dominant
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and at high Ra, radiation is dominant. These results are in agreement with those of Hadizadeh and
Tien [2] as shown in Figures 3, 4 and 7 for local heat flux and in Figure 6 for Nusselt numbers.
These results point out in general, that high Rayleigh number causes high convection, i.e. at lower
Ra of 1 and below radiation is dominant and convection practically absent hence the negative and
increasing heat flux even at a considerable distance from the hot end. And as Rayleigh number
crosses Ra = 10 and increases to Ra = 100 convection is equally influencing between Ra = 1
and 10 though not dominant.
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CONCLUSIONS AND SUGGESTIONS

The porous slabs are used for providing indirect heat in vacuum distillers, chemical reactors with
indirect and controlled heating bioreactors, vacuum and steam-heated tube dryers where steam,
oil or a thermic fluid is used to provide heat. The heat is supplied using hot vapour, steam or a
thermic fluid in by slowly perfusing through a porous enclosure. They are also used in coolant
circuits in nuclear reactors and in thermofusion reactors as diverters.

The coordinates of the surface region is converted to transform the irregular domain 0�x�1,
−��z�h(x) to the regular-shaped domain where all boundaries will coincide with grid lines. This
was needed for a numerical solution of the above model using a finite difference method.

For the case of no through flow, buoyancy-driven flow is the only mode of convective motions.
Since the effect of through flow on this basic flow structure is under consideration. All calculations
for this case were performed for values of R ranging up to 80 and four different aspect ratios
L = 2, 3, 4, 5. The Nusselt numbers increase slightly with medium Rayleigh numbers (convection-
dominated region) as expected. Since at low Ra, the conduction is dominant and at high Ra, radiation
is dominant. Hadizadeh and Tien [2] studied the forced convection on the surface of porous layer.
In that paper they dealt with in detail the boundary regime of the liquid in the channel and modelled
the flow and heat transfer. Also, we compare our data with those of Hadizadeh and Tien [2] for
the Nusselt and Rayleigh numbers. These results are in agreement with the reported results.

NOMENCLATURE

A shape parameter of the curved heated surface
B amplitude
D diffusion parameter
H amplitude f variation in heat input
Km thermal conductivity of porous media
M = (�/2�∞)(t∞/t) for incompressible flow
�, 	m (= maximum value of 	)

(�/�∞) for compressible flow
n coordinate in the direction of outward normal Nw
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P for incompressible flow (p/p∞); for compressible flow (p/p∞)2

entrance surface
p pressure bar, q-heatflux ((w/m2) boundary)coolant exit surface
s distance curved boundary Sw
Temperature ratio (t/t∞)

t absolute temperature K
u coolant velocity vector
w width of porous region along the x-axis
X, Y Cartesian coordinates x/w, y/w
X0, Y0 functions X (	), Y (	) along S0
x, y Cartesian coordinates
Z complex variable X + iY
K permeability

Greek symbols


 pore diameter function (= ��s/	)

�, � coolant viscosity and density
� potential function
� kinematic viscosity
	 function orthogonal to

∇2 �2/�X2 + �/�Y 2 (Kronecker delta function)

Subscripts

s point at shaped coolant
0 point at curved
∞ conditions in coolant tank
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